# Supersymmetry and conformal theories on the lattice from $\mathcal{N}=1$ super Yang-Mills towards super QCD

Georg Bergner FSU Jena, WWU Münster





East Lansing: July 27, 2018

- Supersymmetric Yang-Mills theory and SQCD on the lattice
- 2 Mixed representation composite Higgs model
- Supersymmetric QCD

in collaboration with S. Ali, H. Gerber, P. Giudice, S. Kuberski, C. Lopez, G. Münster, I. Montvay, S. Piemonte, P. Scior (DESY-Münster-Regensburg-Jena)

## Why study SUSY on the lattice?

- BSM physics: Supersymmetric particle physics requires breaking terms based on an unknown non-perturbative mechanism.
  - ⇒ need to understand non-perturbative SUSY
- Supersymmetry is a general beautiful theoretical concept: (Extended) SUSY simplifies theoretical analysis and leads to new non-perturbative approaches.
  - $\Rightarrow$  need to bridge the gap between "beauty" and "reality"

## Why study (near) conformal theories on the lattice?

- SSM physics: Composite Higgs / walking Technicolour scenarios, walking behaviour allows large scale separation with light scalar bound state
- Theoretical questions: What is the conformal window? What non-QCD-like behaviour of a strongly interacting theory is possible? What is the effective field theory description for a walking theory?

## $\mathcal{N}=1$ super Yang-Mills theory

#### Supersymmetric Yang-Mills theory:

$$\mathcal{L}=rac{1}{4}F_{\mu
u}F^{\mu
u}+rac{1}{2}ar{\lambda}(
ot\!\!/+m_g)\lambda$$

- supersymmetric counterpart of Yang-Mills theory;
   but in several respects similar to QCD
- $\bullet$   $\lambda$  Majorana fermion in the adjoint representation
- SUSY transformations:  $\delta A_{\mu} = -2i\bar{\lambda}\gamma_{\mu}\varepsilon$ ,  $\delta\lambda = -\sigma_{\mu\nu}F_{\mu\nu}\varepsilon$

## What has been investigated so far:

- SU(2) and SU(3): SUSY Ward-identities and particle spectrum
   ⇒ Talk by H. Gerber
- Indications for SUSY continuum limit and multiplet formation in SU(2) and SU(3) SYM.
- finite temperature SU(2) SYM
   ⇒ SU(3) SYM: talk by C.Lopez
- compacitfied SYM: Witten index and absence of any deconfinement transition (continuity)
- $\Rightarrow$  nearly concluded studies of SYM for SU(2) and SU(3)

## Conformal window: adjoint QCD with different $N_f$

- near conformal behaviour with a constant mass ratios for  $N_f>1/2$
- range of  $N_f$  completed with  $N_f = 3/2$  (Talk by P. Scior)

| Theory                  | scalar particle   | $\gamma_*$ small $eta$ | $\gamma_*$ larger $eta$ |
|-------------------------|-------------------|------------------------|-------------------------|
| $N_f = 1/2 \text{ SYM}$ | part of multiplet | _                      | _                       |
| $N_f = 1$ adj QCD       | light             | 0.92(1)                | 0.75(4)*                |
| $N_f = 3/2$ adj QCD     | light             | 0.50(5)*               | 0.38(2)*                |
| $N_f = 2$ adj QCD       | light             | 0.376(3)               | 0.274(10)               |

(\* preliminary)

 $\Rightarrow$  Near conformal lattice data for a range of theories starting at smaller  $N_f$  than expected from perturbative analysis.

## Going beyond $\mathcal{N}=1$ SYM: SQCD

- ullet add  $N_c \oplus ar{N}_c$  chiral matter superfield
- SYM + quarks  $\psi$  and squarks  $\Phi_i$  with covariant derivatives, mass terms and

$$\begin{split} &i\sqrt{2}g\bar{\lambda}^{a}\left(\Phi_{1}^{\dagger}T^{a}P_{+}+\Phi_{2}T^{a}P_{-}\right)\psi\\ &-i\sqrt{2}g\bar{\psi}\left(P_{-}T^{a}\Phi_{1}+P_{+}T^{a}\Phi_{2}^{\dagger}\right)\lambda^{a}\\ &\frac{g^{2}}{2}\left(\Phi_{1}^{\dagger}T^{a}\Phi_{1}-\Phi_{2}^{\dagger}T^{a}\Phi_{2}\right)^{2}. \end{split}$$

## Why we consider SQCD

- natural extension of supersymmetric Yang-Mills theory
- relation to possible extensions of the standard model
- earlier studies of lattice formulation: perturbative [Costa, Panagopoulos], tuning [Giedt, Veneziano]

#### SQCD analysis of Seiberg et al.:

- $N_f < N_c$  No vacuum
- ullet  $N_f=N_c$  confinement and chiral symmetry breaking
- $\frac{3}{2}N_c < N_f < 3N_c$  infrared fixed point (duality)

Like other SUSY theories beyond  $\mathcal{N}=1$  SYM: conformal or near conformal behaviour

## Why we should better not consider SQCD

- large space of tuning parameters [Giedt] (O(10)) parameters
- just test the mismatch
- might need formulation with Ginsparg-Wilson fermions
- still test it with Wilson fermions
- complex Pfaffian
- ullet related to bosonic symmetry transforming Pf o Pf\*
- not well behaved chiral limit:
  - either near conformal
  - test near conformal scenario in a related theory
  - or unstable vacuum
  - ullet test with  $N_f=1$  SQCD

## Why we should better not consider SQCD

- large space of tuning parameters [Giedt] (O(10) parameters)
- just test the mismatch
- might need formulation with Ginsparg-Wilson fermions
- still test it with Wilson fermions
- complex Pfaffian
- ullet related to bosonic symmetry transforming Pf ightarrow Pf\*
- not well behaved chiral limit:
  - either near conformal
  - test near conformal scenario in a related theory
  - or unstable vacuum
  - test with  $N_f = 1$  SQCD

## Ultra Minimal Walking Technicolour

- suggested composite Higgs model [Ryttov,Sannino]:  $N_f = 1$  in adjoint  $+ N_f = 2$  in fundamental representation of SU(2)
- lattice studies indicate near conformal behaviour at lower  $N_f$  for the adjoint representation

```
N_f = 1/2 adjoint + N_f = 2 in fundamental
```

- expectations: close to conformal, but still walking
- ideal candidate for a check of effective theories
- SQCD without scalars

# Cross check in pure $N_f = 2 \text{ SU}(2)$ fundamental theory



- reasonable agreement with recent (continuum extrapolated) results [Arthur, Drach, Hansen, Hietanen, Pica, Sannino]
- larger  $\beta$  to avoid possible bulk transition (SU(2)  $N_f = 1$  adjoint)

# First investigations in mixed representation setup: tuning



 one-loop improved Wilson clover fermions: tuning of fundamental and adjoint not independent

## First investigations in mixed representation setup



• adjoint flavour drives theory towards near conformal behaviour

$$N_f = 1 \text{ SU}(2) \text{ SQCD vacuum}$$



• the expected instability when going chiral

# $N_f = 1 \text{ SU}(2) \text{ SQCD vacuum}$



- constraint phase diagram for the parameter tuning
- simulations with an  $O(g^0)$  SUSY action

#### Conclusions

- SYM finished, new challenge theories with scalars like SQCD
- challenging tuning problem
- other challenges: conformal behaviour, vacuum structure
- two approaches for our investigations:
  - study of related mixed representation theory
  - simulations of  $N_f = 1$  SQCD and search for non-perturbative tuning conditions
- Requires analysis in a regime where SUSY is restored in SYM (at least  $24^3 \times 48$  lattice with unimproved action)